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Abstract —The step in firrline is the basic building block of filters,

transformers, and matching elements. We present a simplified, yet fairly
accurate, treatment based on solving by variational methods the step kr
symmetric finned waveguide for the E and H formulations. Experiment is

in good agreement with theoretical predictions for not too large stepsand
fairly good even for large steps. An “optimized” equivalent circuit with

constant (lumped) components for commonly encountered steps is pre-

sented in a form directly usable by the designer.

I. INTRODUCTION

A. Objectives

A LTHOUGH experimental data may be readily avail-

able, the characterization of finline discontinuities

from a theoretical viewpoint is important for two reasons.

First, an insight into the physical mechanisms of the

discontinuity allows appropriate equivalent circuits to be

developed, which can then be applied to the broad-band

modeling of measured discontinuities. Second, armed with

accurate analysis techniques, circuit design can proceed

directly, by using the equivalent circuit models in commer-

cially available programs. The objectives are, therefore, to

develop 1) a basic understanding of finline discontinuity

problems, and 2) an accurate and efficient analytical tech-

nique which will lead to simple circuit models.

B. Review of Analytical Methods

Early theoretical treatments of the finline step disconti-

nuityy were given in [1]–[3]. Realizing the difficulties en-

countered in obtaining a sufficient number of finline

modes, in [4] the problem was converted into one of

determining resonator eigenvalues. The method is versatile,

but does require large amounts of computer time. Using

the singular integral equation (SIE) technique, in [5] higher

order modes were obtained with greater ease, including

modes of complex propagation [6].

A highly efficient method of determining the finline

mode spectrum using the transverse resonance diffraction

(TRD) technique was developed in [7]. The modes deter-

Manuscript receivedSeptember10, 1987; revisedDecember2, 1988.
C. A. Olley was with the GEC-Marconi Research Centre, Great

Baddow, Essex,U.K. He k now with PlesseyResearch,Roke Manor,
Romsey, Hampshire, England.

T. Rozzi is with the School of Electrical Engineering, University of
Bath, Claverton Down, Bath BA2 7AY, England.

C. M. D. Rycroft waswith the GEC–Marcoti ResearchCentre, Great
Baddow. Essex,U.K. He is now with CossorElectronics, Harlow, Essex,
England.

IEEE Log Number 8927155

mined in this method may be easily incorporated into a

variational formulation for most discontinuity problems.

Such a formulation is readily amenable to approximate

techniques, thereby enhancing numerical efficiency and

allowing the results to be easily incorporated into CAD

programs.

II. DISCUSSION OF THE FINLINE STEP

DISCONTINUITY PROBLEM

The similarity between finlines and ridge waveguides has

been observed by numerous workers. Much of the field is

concentrated under the ridge, with very little field outside.

Because of this, a step in a ridge waveguide can be com-

pared to a step in height within a parallel-plate guide (see

Fig. 1), and this may be rigorously solved from the quasi-

static solution employing the conformal mapping tech-

nique [8].

From these solutions two distinct edge effects can be

identified. The first is associated with the 90° bend, A (see

Fig. 2). This causes a localized concentration of electric

field in the x-z plane, while in accordance with the

behavior of the wall currents, all magnetic fields must

vanish at this point. The second edge effect, on the 270°

bend, B, operates in the opposite manner, intensifying the

y-directed magnetic field and causing all electric fields to

vanish.

In the limiting case of ridge waveguides, when the ridge

is considered to be infinitesimally thin (finned waveguide),

the discontinuity is located only in the x – z plane, so that

distortions to the y variation of fields are minimal. The

discontinuity will therefore excite modes with a similar y

variation to that of the incident wave. These include the

other fundamental mode and the first few members of

higher order slot mode families. However, particularly in

the case of large steps, the excitation of other high-order

modes will also occur. Moreover, since the ridge is now

extremely thin, an additional effect must be considered;

the step in finned waveguide affects the y – z electric and

magnetic fields as a current concentration builds on the

metallization edge, C.

The scattering mechanisms of a step discontinuity in a

finline, including the addition of a substrate layer, are
therefore highly complex and involve all field components.

With exact knowledge of the high-order modes this maybe

reduced to a two-dimensional problem and solved rigor-
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reduce to transverse electric (TE) and transverse

magnetic (TM) waves. Important also is that the

coupling between these modes, which gives rise to

hybrid and complex propagation [6], [7], [9], van-

ishes.

111. MODES OF THE SYMMETRICAL

FXNNED WAVEGUIDES

Consider the guiding structure shown in Fig. 3. Assume

a z dependence of exp ( – j?z ). TE modes are given by a

ously by imposing continuity of transverse fields over the

waveguide cross section. However, the relationship be-

tween transverse electric and magnetic fields is not

straightforward, necessitating the use of dyadic wave
impedances within the dielectric region. Several simplifica-

tions of the problem will therefore be made, as follows:

1) Since there is no discontinuity of dielectric in a

finline step, the effect of the dielectric on the field

shape may be neglected. This simplification does

not allow for a fully rigorous solution, especially in

the case of thick substrates of high permittivity.

This situation, however, is not commonly found in

practice.

2) From previous work [7], it was demonstrated that

for symmetrical finned waveguides, modal solutions

x

z-directed potential as

Finline Metal lisation

EX(x, y)

1

EY(X,Y) =E(x, Y) =

J%(X>Y)

13
+—

dy I(j Ute(x,y) (1)
.—

ax

0

11H(x, y) = (l/jut) + jp~ Ufe(x, y) (2)

13y

K:–~z

where

IT,, (x, y) = ~ Uen(8n/a)l’2

~=iJ

.cos(nnx/a )cosh K.y(h – y)/cosh K.Vh,

(
8.= : forn>O

forn=O

K., = {(n~/a)2+~2 –K~}l’2.

K. is the free-s~ace wavenumber and U... are as vet
“ . en ..– ,-.
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unknown coefficients. Similarly, for TM modes,

n

+j/3~

E(x, y) = +
.j~-$

(Jtm(x, y) (3)
J(d/.l

K:–f12

1-
a

dy

II(x, y) = a
——

1 ax

0

where

qm(x, y) = ~ Uhn(2/a)l’2

IOtm(x,y) (4)

Here Uh. areas yet unknown coefficients. Solutions for TE

and TM modes, and hence the coefficients U,ti and Uhn,

are obtained by imposing the continuity of fields (implicit

in this the symmetrical case), subject to the boundary

conditions of

y=o,

EX(X) =

E,(x) =

HX(X) =

Hy(x) =

the fins. For instance, for TE modes at

- ~ uhn(8n/’a)1/2
~=()

. cos ( n mx/a ) K.y tanh K.yh (5a)

~ U,.(2/a)1i2(nr/a )sin(nnx/a) (5b)
~=1

(P/@’)5 %(va)l/2
~=1

.(nn/a)sin(nmx/a) (5C)

~=()

, cos (nmx/a)K.y tanh Knyh. (5d)

(Note the occurrence of a scalar wave impedance linking

the fields EX and Hy and Ey and HX, which is a property

of pure TE and TM modes. This does not hold in general

finline structures.)

By matching a transverse electric and a transverse mag-

netic field component, say EX(X ) and HX( x ), the problem

is solved, and to this end it is convenient to adopt the

modified field quantity

/
H;(x) = – HX(X)dX= (8/uf) : u, JP~n(x) (6)

.=O

where

9An(x) = (8/a)l’2cos(n~x/a).

This unifies the boundary conditions in x, so that an

integral equation linking the two fields at the plane of the

L-J /
Fig. 4. Transverse resonance model.

fins is readily obtained as

Uhoqho(x)io+ jy(x; X’)EX(X’) (.i X’= O (7)

where the kernel (known as the Green’s admittance in this

case) is given by

Y(x; X’) = 5 (B/tic) qhn(x)9hn(x’) Coth Kn,~/Kn,
*=[

and

YO=(@)cot[(K:-~2 )1’2h]/(K;v~2)1’2.

The integral equation is now expanded in terms of a set

of functions f., ( .x) which exist only over the fin aperature.

By applying the Ritz-Galerkin procedure, (7) is converted

into

YO+(P;. Y-’. PO1=O=O. (8)

P: and P. are row and column vectors respectively of

elements PO~. Tlhe coefficients Pnm link the n th eigenfunc-

tion rpk.(x) to the mth expansion function fn(x) in the

Ritz-Galerkin procedure. Y is a matrix resulting from the

expansion of the Green’s admittance Y(x: x‘) and YO is

the (scalar) admittance linking fields of the fundamental

transverse mode at the plane of the fins.

Solutions to (8) can be interpreted as resonances of the

transverse network given in Fig. 4. The resonance condi-

tion is

Yo+l?=o (9)

where B is the combined admittance of all higher order

transverse modes coupled by the fin, that is,

B=(P;Y-’.PO1 -l.

The efficiency of the solution is vastly enhanced by

employing a set of basis functions { ~~(x )} which are

obtained from the conformal mapping of the electric field

into an iris. These are the Schwinger functions, which

approximate the exact slot field so well that it is often only

necessary to employ one expansion function. For instance,

the zeroth Schwinger function ( ~o( x )) gives rise to solu-

tions, known as the TEO family, from

P;oYo + ~ P:oYn = 0.
~=1

But since

a special property of Schwinger functions allows the infi-
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Fig. 5. Illustration of slot fields and fin currents around the fmline step.

nite sum to be evaluated analytically as

~ PjO/n = (P&/2] in Icsc’ (mv/a)l
~=1

where w is the fin gap. This gives the result

YO+ *ln ]csc ( 7rw/a) I

+ x (~no/~(xJ2(Yn–I/n) = o. (lo)
~=1

Here the infinite sum has been reduced to a correction

series which converges rapidly (after two or three terms) and

so further improves numerical efficiency. Moreover, the

nearly exact description afforded by the Schwinger func-

tions to the eigenmodes of the fin implies that high-order

TE~ mode families follow directly from the solution of

cc

~=o

A similar procedure is followed for TM modes. Here,

however, the TMO family is physically impossible.

IV. SIMPLIFIED DISPERSION

Since the modes of the symmetric finned guide are pure

TE or TM, their dispersion maybe simply described by an

expression of the form

/?={K:-K: (11)

where A-o is the free-space wavenumber, and K, is the

cutoff wavenumber.

Thus the previous analysis need be performed only once

for a particular fin gap, by imposing ~ = O, so that the

complete mode spectrum of finned waveguide is obtained

via the determination of the cutoff frequencies.

V. VARIATIONAL FORMULATION FOR THE STEP

DISCONTINUITY IN FINNED WAVEGUIDE

Having obtained the complete mode spectrum of finned

waveguide, a solution to the step discontinuity problem

can now be formulated. From the physical considerations

given in Section II the likely behavior of the slot field and

fin currents is as shown in Fig. 5. The distortion to the slot

field will excite only TM modes via the required E= field,

introducing a shunt capacitive reactance, whereas the dis-

tortion of the current will excite only TE modes via the

required Hz field, introducing a series inductive reactance.

Furthermore, the difference between the y variation of the

field on either side of the step will most significantly excite

Fig. 6.

n:l
jx

o

In Jl)z= lsl

o

Equivalent circuit model for finline step discontintuty,

higher order TEO modes, introducing additional inductive

reactance. An equivalent circuit for the step discontinuity

will therefore be chosen as shown in Fig. 6. The elements

of the equivalent circuit may be obtained from separate

admittance and impedance matrix formulations. These are

~ =J@H/%2) =J(b%) (12a)

b = I/Zll (12b)

and

x=l/Y2~. (12C)

Variational expressions for the elements of the normal-

ized impedance matrix are given by [10]

zll=c~. Y-l. c

Z12 = 221 = CT. Y- ‘D

Z22=DT. Y-i. D (13)

where CT is a column vector of elements given by

~l=j+O(x+y)e,(X,.v)~xdy. (14)

Here 40(x, y) is the fundamental modal field function
in region 1 (see Fig. 2), and e, (x, y) is the i th basis

function for the discontinuity electric field on the disconti-

nuity. Similarly,

/
D, = XO(x, y)eZ(x, y)dx@ (15)

where x O(x, y) is the modal function in region 2. The

matrix Y is the Green’s admittance which links magnetic

and electric fields over the discontinuity plane, expanded

onto the basis e, (x, y), that is,

~j=f~y(~;r’)ez(r) e(r’)drd~’

where r denotes (x, y) and r’ denotes (x’, y’).

The Green’s admittance itself is given

Y(r; r’) = E (jtie/yk)*k(r) *k(r’)

h=l

m

by

m=l

where +~ ( r) is the modal field function for the k th TM

mode in region 1 and y~ is its propagation coefficient.

x ~(r) is similarly the modal field function in region 2 and

Ym its propagation coefficient.
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lt k noted that, once an appropriate choice for the

electric field on the discontinuity is assumed, we obtain an

expression for b and an expression for n. We shall now

proceed to obtain an expression for x and a second one for

n, given an appropriate discontinuity magnetic field.

Variational expressions for the normalized admittance

matrix are similarly given by

Yll = ET. Z-l. C

Y12= @.z-l”D

Y22=D~. z-l.D (17)

where now

< =~~O(r)hZ(r) dr (18a)

J
~,= zO(r)hi(r)dr (18b)

where h,(r) is the i th basis function for the magnetic field

at the discontinuity,

zz,=jfz(r;r’)~l(r)~t(r’) ~rdr’- (19)

The Green’s impedance is given by

Z(r; r) = f (jtip/~k)ijk(r) jk(r’)

k=l

+ ~~l(~~u/7m)im(r)im(r’). (20)

Here ~k(r) is the modal field function for the kth TE

mode in region 1, and ~ ~(r) is the modal field function in

region 2.

Regarding now the modal functions, these are defined in

(5) as infinite series. Their use in the Green’s functions (16)

and (20) requires them to be orthonormalized over the

guide cross section, as follows. In the impedance matrix

formulation, where an electric field expansion is employed,

the modal functions are given by

+,(r)=E,(r)/(~j(r)dr}l/2(21a)

x(r)=E.,(r)/{~~j,(r)dr}’/2(21b)

where Eci(r) and Ed,(r) are appropriate truncations of the

infinite series (5) representing the transverse electric fields

of the i th mode in regions 1 and 2 respectively. Thus

J()$? r dr=l /()X: r dr=l

and similarly in the admittance matrix formulation where

a magnetic field expansion is employed.

For narrow firr gaps the denominator terms in the above

normalizations are in fact proportional to the z-directed

power flow for each mode, and for small steps in narrow

finlines the equivalent circuit reduces to a simple trans-

former, whose ratio is given by the two fundamental mode

981
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Fig. 7, Comparison of experimental and calculated data for XII

powers. In general, however, the full variational formula-

tion is required to model properly the reactive effects

associated with a. step discontinuity.

Finally, we shall now discuss the choice of expression

functions for the transverse electric ( ei(r)) and magnetic

h,(r)) fields to be used in the variational expressions.

Although the formulation so far is fairly general, we will

now seek to employ a single function in each formulation,

by making use of the redundancy still present in the

definition of the transformer ratio (12), which is common

to both formulations. As to the choice of this function, we

noted in the introduction that whereas the edge singularity

and the quasi-s tatic fields near the gap in the infinite

finline are known, those for the step of Fig. 2 are not. In

each formulation we shall employ here the fundamental

quasi-static field of a fin gap of dimensions g intermediate

between c and d. The precise value of g is fixed, in fact,

by the condition that the value of n be consistent in both

formulations.

VI. EQUIVALENT CIRCUIT MODELS FOR UNILATERAL

FINLINE STEP DISCONTINUITIES

Theoretical results for the three finline step discontinu-

ities are compared in Figs. 7 and 8 with experiment. The

experiment was carried out at K-band (1 8–26, 5 GHz) in

an automated vector measuring system. First, waveguide-

to-finline tapered transitions were tested and their charac-

teristics stored on disk. Subsequently, the scattering pa-

rameters of the step itself could be “de-embedded” from
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%–s22
Fig. 8. Comparison of experimental and calculated data for S22.

the measurement of a second set of identical test jigs, now

containing the discontinuity. Overall attenuation loss was

in the region of 0.1 dB, mainly occurring in the transitions.

Return loss of the transition was in the region of 20 dB,

indicating a good match. Consequently, transmission char-

acteristics can be deduced from the reflection. The dots in

Figs. 7 and 8 indicate a scatter of experimental points to

be compared with the calculated data continuous lines.

Calculations employed only one expansion function, that

of an intermediate finline gap, with ten higher order TE

and TM slot modes and three higher order TEO modes.

It was previously reported [7] that the higher order slot

mode cutoff frequencies rapidly approach asymptotic val-

ues (corresponding to box resonances) as the fin gap is

reduced. Indeed this effect was found to cause several

modes to vanish from the calculations. Moreover, it was

found that since a step between narrow finlines causes

little disturbance to the variation of field, such a step had

very little associated reactance. However, as the step was

widened, higher order TE and TM slot modes became

excited, introducing a shunt susceptance and series reac-

tance. Since these modes are found to be well cut off, these

reactance did not vary much with frequency. The y per-

turbation, on the other hand, excites the less cut off TEO

modes, introducing an additional series reactance. This can

vary rapidly with frequency, in fact faster than the reac-

1 )

STEP1

1 J
STEP’

t /
sTEP~

Fig. 9. Equivalent circuit models for the three finline step dlscontinu-
itles (dimensions in mm).

tance of a lumped inductor, so that an improved circuit

model may be required to account for this effect. From

Figs. 7 and 8 it can be seen that the theoretical and

experimental results agree very well concerning the basic

behavior of the step discontinuity.

In terms of numerical efficiency, the solution is excel-

lent. After an initial calculation for cutoff frequencies has

been performed (typically 10 seconds on a minicomputer

for 20 modes) the various integrals are quickly evaluated

(resolved into simple sums because of the orthogonality of

qk.(x)). This information is then used to evaluate the

elements of the equivalent network at any particular fre-

quency. Since the frequency dependence of the Green’s

admittances is simple, this is also straightforward.

However, discrepancies remain, indicating that the solu-

tion has not yet converged, not because of a lack of higher

order modes, but because only a single basis function was

used. In order to improve accuracy, future work will be

aimed at developing a more sophisticated set of basis

functions which incorporate the physical effects outlined

in Section II.

Finally, the equivalent circuit models for the three uni-

lateral finline step discontinuities with circuit element val-

ues obtained from theory are presented in Fig. 9. It is

noted that 0.3 mm, corresponding in absolute terms to

155-145 G? in the range 18-26 GHz, is the gap width

commonly used in mounting beam-lead diodes. Figs. 10

and 11 compare their response with the experiment (see

also Figs. 7 and 8). These models may be used directly in

CAD design procedures for finline components.

VII. CONCLUSIONS

We have applied the variational method to a step dis-

continuity in unilateral finline on the basis of a simplified

description of the finline modes, as modes of a symmetri-

cal finned waveguide. A prudent choice of the “ trial field”
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Fig. 11. Measured and computed data relating to the third finline step

discontinuity: — .— .— best fit from experiment;
— computed.

in the electric and the magnetic formulations allows us to

derive, very economically, simple equivalent circuits with

frequency-independent elements over a full waveguide

band for a broad range of practical step ratios. This

information is directly usable for CAD purposes.
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