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An Approximate Variational Solution
to the Step Discontinuity in Finline

CHRIS A. OLLEY, T. ROZZI, SENIOR MEMBER, IEEE, AND C. M. D. RYCROFT

Abstract —The step in finline is the basic building block of filters,
transformers, and matching elements. We present a simplified, yet fairly
accurate, treatment based on solving by variational methods the step in
symmetric finned waveguide for the E and H formulations. Experiment is
in good agreement with theoretical predictions for not too large steps and
fairly good even for large steps. An “optimized” equivalent circuit with
constant (lumped) components for commonly encountered steps is pre-
sented in a form directly usable by the designer.

1. INTRODUCTION
A. Objectives

LTHOUGH experimental data may be readily avail-

able, the characterization of finline discontinuities
from a theoretical viewpoint is important for two reasons.
First, an insight into the physical mechanisms of the
discontinuity allows appropriate equivalent circuits to be
developed, which can then be applied to the broad-band
modeling of measured discontinuities. Second, armed with
accurate analysis techniques, circuit design can proceed
directly, by using the equivalent circuit models in commer-
cially available programs. The objectives are, therefore, to
develop 1) a basic understanding of finline discontinuity
problems, and 2) an accurate and efficient analytical tech-
nique which will lead to simple circuit models.

B. Review of Analytical Methods

Early theoretical treatments of the finline step disconti-
nuity were given in [1]-[3]. Realizing the difficulties en-
countered in obtaining a sufficient number of finline
modes, in [4] the problem was converted into one of
determining resonator eigenvalues. The method is versatile,
but does require large amounts of computer time. Using
the singular integral equation (SIE) technique, in [5] higher
order modes were obtained with greater ease, including
modes of complex propagation [6].

A highly efficient method of determining the finline
mode spectrum using the transverse resonance diffraction
(TRD) technique was developed in [7]. The modes deter-
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mined in this method may be easily incorporated into a
variational formulation for most discontinuity problems.
Such a formulation is readily amenable to approximate
techniques, thereby enhancing numerical efficiency and
allowing the results to be easily incorporated into CAD
programs.

II. DiSCUSSION OF THE FINLINE STEP
DISCONTINUITY PROBLEM

The similarity between finlines and ridge waveguides has
been observed by numerous workers. Much of the field is
concentrated under the ridge, with very little field outside.
Because of this, a step in a ridge waveguide can be com-
pared to a step in height within a parallel-plate guide (see
Fig. 1), and this may be rigorously solved from the quasi-
static solution employing the conformal mapping tech-
nique [8]. :

From these solutions two distinct edge effects can be
identified. The first is associated with the 90° bend, 4 (see
Fig. 2). This causes a localized concentration of electric
field in the x-z plane, while in accordance with the
behavior of the wall currents, all magnetic fields must
vanish at this point. The second edge effect, on the 270°
bend, B, operates in the opposite manner, intensifying the
y-directed magnetic field and causing all electric fields to
vanish.

In the limiting case of ridge waveguides, when the ridge
is considered to be infinitesimally thin (finned waveguide),
the discontinuity is located only in the x—z plane, so that
distortions to the y variation of fields are minimal. The
discontinuity will therefore excite modes with a similar y
variation to that of the incident wave. These include the
other fundamental mode and the first few members of
higher order slot mode families. However, particularly in
the case of large steps, the excitation of other high-order
modes will also occur. Moreover, since the ridge is now
extremely thin, an additional effect must be considered;
the step in finned waveguide affects the y—z electric and
magnetic fields as a current concentration builds on the
metallization edge, C.

The scattering mechanisms of a step discontinuity in a
finline, including the addition of a substrate layer, are
therefore highly complex and involve all field components.
With exact knowledge of the high-order modes this may be
reduced to a two-dimensional problem and solved rigor-
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Fig 2. Finline step discontinuity.

ously by imposing continuity of transverse fields over the
waveguide cross section. However, the relationship be-
tween transverse electric and magnetic fields is not
straightforward, necessitating the use of dyadic wave
impedances within the diclectric region. Several simplifica-
tions of the problem will therefore be made, as follows:

)

2)

Since there is no discontinuity of dielectric in a
finline step, the effect of the dielectric on the field
shape may be neglected. This simplification does
not allow for a fully rigorous solution, especially in
the case of thick substrates of high permittivity.
This situation, however, is not commonly found in
practice.

From previous work [7], it was demonstrated that
for symmetrical finned waveguides, modal solutions

X

b = 5,334mm

a = 2.l6mm

| __L_t_z”____ -7

Fig. 3. Symmetrical finned waveguide: a = 2.16 mm, b = 5.334 mm.

reduce to transverse electric (TE) and transverse
magnetic (TM) waves. Important also is that the
coupling between these modes, which gives rise to
hybrid and complex propagation [6], [7], [9], van-
ishes.

III. MODES OF THE SYMMETRICAL
FINNED W AVEGUIDES

Consider the guiding structure shown in Fig. 3. Assume
a z dependence of exp(— jBz). TE modes are given by a
z-directed potential as

E (x.7) "3y
E(x,y) |=E(x,y)= 3 |o.(x,y) (1)
E,(x,y) ox
0
i} .
—jﬁa
H(x,y)=(1/jwe) +jﬁi o.(x,y) (2)
dy
K2 B |

where

o0
o (x, )= 2 U,(8,/a)"?
n=0

-cos(nmx/a)cosh K, (h—y)/cosh K, h,
_ {2
5,— {1

K, = {(nvr/a)2+ B — KOZ}

forn>0
forn=20

1/2

K, is the free-space wavenumber and U, are as yet
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unknown coefficients. Similarly, for TM modes,

- 9

E(x,y) = 9
X, = - .
Y jou

(3)

% (%, 7)

L 1
(4)

where
0—tm(x7 y) = E l]hn(z/a)l/2
n=1

-sin(nwx/a)sinh K, (h— y)/sinh K, h.

Here U, are as yet unknown coefficients. Solutions for TE
and TM modes, and hence the coefficients U,, and U,,,
are obtained by imposing the continuity of fields (implicit
in this the symmetrical case), subject to the boundary
conditions of the fins. For instance, for TE modes at
y=0,

E(x)== 3 Upn(8,/a)"

n=0

-cos(nmx/a)K, tanh K, h (5a)

E (x)= f U, (2/a)*(nn/a)sin(nax/a) (5b)

H(5) = (B/u) L Uy (2/0)"”
-(nw/a)sin(nwx/a) (5¢)
H,(x) == (B/we) ¥ Upn(8,/a)""

n=0
-cos(nmx/a)K,, tanh K, h.

(5d)

(Note the occurrence of a scalar wave impedance linking
the fields E, and H, and E, and H,, which is a property
of pure TE and TM modes. This does not hold in general
finline structures.)

By matching a transverse electric and a transverse mag-
netic field component, say E (x) and H,(x), the problem
is solved, and to this end it is convenient to adopt the
modified field quantity

HI(x) = = [1,(x) dv= (B/0) T Uyin(x) (©

where

Qu.(x) = (Sn/a)1/2cos(nwx/a).

This unifies the boundary conditions in x, so that an
integral equation linking the two fields at the plane of the
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fins is readily obtained as

Uho‘Pho(x)Y‘o““fY(X;x')Ex(x’) dx'=0 (7)
where the kernel (known as the Green’s admittance in this
case) is given by

Y(x; xl) = Z (B/we)q')hn(x)(phn(x/) coth Kn_vh/KnV

n=1
and

12 1,2

Yo= (B/we)cot[(K3 - 2)"h] /(K¢ - B7)
The integral equation is now expanded in terms of a set
of functions f,,(x) which exist only over the fin aperature.
By applying the Ritz—Galerkin procedure, (7) is converted
into

Y,+(PY L P) " =0. (8)

PT and P, are row and column vectors respectively of
elements P;,,. The coefficients P,,, link the nth eigenfunc-
tion ¢,,(x) to the mth expansion function f,(x) in the
Ritz-Galerkin procedure. Y is a matrix resulting from the
expansion of the Green’s admittance Y(x:x") and ¥, is
the (scalar) admittance linking fields of the fundamental
transverse mode at the plane of the fins.

Solutions to (8) can be interpreted as resonances of the
transverse network given in Fig. 4. The resonance condi-
tion is

Y,+B=0

(9)
where B is the combined admittance of all higher order
transverse modes coupled by the fin, that is,

B=(PIYLp) "

The efficiency of the solution is vastly enhanced by
employing a set of basis functions {f, (x)} which are
obtained from the conformal mapping of the electric field
into an iris. These are the Schwinger functions, which
approximate the exact slot field so well that it is often only
necessary to employ one expansion function. For instance,
the zeroth Schwinger function (fy(x)) gives rise to solu-
tions, known as the TE, family, from

[>e)
POZOYO + Z Pn20Yn =0.
n=1
But since
PLY,—> (P%L/n) as n—oo

a special property of Schwinger functions allows the infi-
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nite sum to be evaluated analytically as
X Po/n=(Pg/2)Inkse’ (mw/a)]
n=1

where w is the fin gap. This gives the result

Y, + 3njesc(mw/a)]

+ X (Pho/Py)’(Y,—1/n) =0. (10)
n=1

Here the infinite sum has been reduced to a correction
series which converges rapidly (after two or three terms) and
so further improves numerical efficiency. Moreover, the
nearly exact description afforded by the Schwinger func-
tions to the eigenmodes of the fin implies that high-order
TE,, mode families follow directly from the solution of

©
E Paner:O‘
n=0

A similar procedure is followed for TM modes. Here,
however, the TM,, family is physically impossible.

1V. SIMPLIFIED DISPERSION

Since the modes of the symmetric finned guide are pure
TE or TM, their dispersion may be simply described by an
expression of the form

p=|Ki-K? (11)

where K, is the free-space wavenumber, and K, is the
cutoff wavenumber.

Thus the previous analysis need be performed only once
for a particular fin gap, by imposing 8 =0, so that the
complete mode spectrum of finned waveguide is obtained
via the determination of the cutoff frequencies.

V. VARIATIONAL FORMULATION FOR THE STEP
DISCONTINUITY IN FINNED WAVEGUIDE

Having obtained the complete mode spectrum of finned
waveguide, a solution to the step discontinuity problem
can now be formulated. From the physical considerations
given in Section II the likely behavior of the slot field and
fin currents is as shown in Fig. 5. The distortion to the slot
field will excite only TM modes via the required E, field,
introducing a shunt capacitive reactance, whereas the dis-
tortion of the current will excite only TE modes via the
required H, field, introducing a series inductive reactance.
Furthermore, the difference between the y variation of the
field on either side of the step will most significantly excite
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Fig. 6. Equivalent circuit model for finline step discontinuity.

higher order TE, modes, introducing additional inductive
reactance. An equivalent circuit for the step discontinuity
will therefore be chosen as shown in Fig. 6. The elements
of the equivalent circuit may be obtained from separate
admittance and impedance matrix formulations. These are

n=y(Z,/Zy) =y(Yo/Y11) (12a)
b=1/7,, (12b)

and
x=1/%Y,. (12¢)

Variational expressions for the elements of the normal-
ized impedance matrix are given by [10]

Z,=ClylcC
Zyy=27,=Cl.Y "D
Z,=D"Y LD (13)

where C7 is a column vector of elements given by

Cy= [Wo(x. v)e,(x, ) dxay. (14)

Here {(x, v) is the fundamental modal field function
in region 1 (see Fig. 2), and e,(x,y) is the ith basis
function for the discontinuity electric field on the disconti-
nuity. Similarly,

(15)

where x,(x, y) is the modal function in region 2. The
matrix Y is the Green’s admittance which links magnetic
and electric fields over the discontinuity plane, expanded
onto the basis e,(x, y), that is,

KJ=//Y(r; r)e(r)e, (') drdr’

where r denotes (x, y) and r’ denotes (x/, y’).
The Green’s admittance itself is given by

D,= [xo(x.y)e,(x., y) dxdy

Y(rir) = T oo/ mv ()04 ()

[«
+ X (J0e/ 1) Xu(F)xw(r)  (16)
m=1
where ¢, (r) is the modal field function for the kth TM
mode in region 1 and v, is its propagation coefficient.
X..(F) is similarly the modal field function in region 2 and
v,, its propagation coefficient.
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It is noted that, once an appropriate choice for the
electric field on the discontinuity is assumed, we obtain an
expression for » and an expression for n. We shall now
proceed to obtain an expression for x and a second one for
n, given an appropriate discontinuity magnetic field.

Variational expressions for the normalized admittance
matrix are similarly given by

Y,=C"-z"\.C
Y,=C"Z7'D
Y,,=D"-Z D (17)
where now
C,= [¥o(r)h,(r) dr (18a)
D,= [Ro(r)h,(r) dr (18b)

where h (r) is the ith basis function for the magnetic field
at the discontinuity,

Z,= ffZ(r; rYn,(r)h,(¢)drdr'.

The Green’s impedance is given by

(19)

2(rir) = ¥ (on/7) (1) Belr)

+ X (/) TRl (20)

Here y,(r) is the modal field function for the kth TE
mode in region 1, and ¥, (#) is the modal field function in
region 2.

Regarding now the modal functions, these are defined in
(5) as infinite series. Their use in the Green’s functions (16)
and (20) requires them to be orthonormalized over the
guide cross section, as follows. In the impedance matrix
formulation, where an electric field expansion is employed,
the modal functions are given by

4,(r) =Ea (1) / (fe2tna)”

1/2

(21a)

X, (r) =Eq (1) / [[Ezyar) @)
where E,,(r) and E, (r) are appropriate truncations of the
infinite series (5) representing the transverse electric fields
of the ith mode in regions 1 and 2 respectively. Thus

[¥3(r)dr=1 [x3(r)ar=1

and similarly in the admittance matrix formulation where
a magnetic field expansion is employed.

For narrow fin gaps the denominator terms in the above
normalizations are in fact proportional to the z-directed
power flow for each mode, and for small steps in narrow
finlines the equivalent circuit reduces to a simple trans-
former, whose ratio is given by the two fundamental mode
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powers. In general, however, the full variational formula-
tion is required to model properly the reactive effects
associated with a step discontinuity.

Finally, we shall now discuss the choice of expression
functions for the transverse electric (e;(r)) and magnetic
h,(r)) fields to be used in the variational expressions.
Although the formulation so far is fairly general, we will
now seek to employ a single function in each formulation,
by making use of the redundancy still present in the
definition of the transformer ratio (12), which is common
to both formulations. As to the choice of this function, we
noted in the introduction that whereas the edge singularity
and the quasi-static fields near the gap in the infinite
finline are known, those for the step of Fig. 2 are not. In
each formulation we shall employ here the fundamental
quasi-static field of a fin gap of dimensions g intermediate
between ¢ and d. The precise value of g is fixed, in fact,
by the condition that the value of n be consistent in both
formulations.

V1. EQUIVALENT CIRCUIT MODELS FOR UNILATERAL
FINLINE STEP DISCONTINUITIES

Theoretical results for the three finline step discontinu-
ities are compared in Figs. 7 and 8 with experiment. The
experiment was carried out at K-band (18-26, 5 GHz) in
an automated vector measuring system. First, waveguide-
to-finline tapered transitions were tested and their charac-
teristics stored on disk. Subsequently, the scattering pa-
rameters of the step itself could be “de-embedded” from
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the measurement of a second set of identical test jigs, now
containing the discontinuity. Overall attenuation loss was
in the region of 0.1 dB, mainly occurring in the transitions.
Return loss of the transition was in the region of 20 dB,
indicating a good match. Consequently, transmission char-
acteristics can be deduced from the reflection. The dots in
Figs. 7 and 8 indicate a scatter of experimental points to
be compared with the calculated data continuous lines.
Calculations employed only one expansion function, that
of an intermediate finline gap, with ten higher order TE
and TM slot modes and three higher order TE, modes.

It was previously reported [7] that the higher order slot
mode cutoff frequencies rapidly approach asymptotic val-
ues (corresponding to box resonances) as the fin gap is
reduced. Indeed this effect was found to cause several
modes to vanish from the calculations. Moreover, it was
found that since a step between narrow finlines causes
little disturbance to the variation of field, such a step had
very little associated reactance. However, as the step was
widened, higher order TE and TM slot modes became
excited, introducing a shunt susceptance and series reac-
tance. Since these modes are found to be well cut off, these
reactances did not vary much with frequency. The y per-
turbation, on the other hand, excites the less cut off TE,
modes, introducing an additional series reactance. This can
vary rapidly with frequency, in fact faster than the reac-
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Fig. 9. Equivalent circuit models for the three finline step discontinu-
ities (dimensions in mm).

tance of a lumped inductor, so that an improved circuit
model may be required to account for this effect. From
Figs. 7 and 8 it can be seen that the theoretical and
experimental results agree very well concerning the basic
behavior of the step discontinuity.

In terms of numerical efficiency, the solution is excel-
lent. After an initial calculation for cutoff frequencies has
been performed (typically 10 seconds on a minicomputer
for 20 modes) the various integrals are quickly evaluated
(resolved into simple sums because of the orthogonality of
¢,,(x)). This information is then used to evaluate the
elements of the equivalent network at any particular fre-
quency. Since the frequency dependence of the Green’s
admittances is simple, this is also straightforward.

However, discrepancies remain, indicating that the solu-
tion has not yet converged, not because of a lack of higher
order modes, but because only a single basis function was
used. In order to improve accuracy, future work will be
aimed at developing a more sophisticated set of basis
functions which incorporate the physical effects outlined
in Section II.

Finally, the equivalent circuit models for the three uni-
lateral finline step discontinuities with circuit element val-
ues obtained from theory are presented in Fig. 9. It is
noted that 0.3 mm, corresponding in absolute terms to
155-145 Q in the range 18-26 GHz, is the gap width
commonly used in mounting beam-lead diodes. Figs. 10
and 11 compare their response with the experiment (see
also Figs. 7 and 8). These models may be used directly in
CAD design procedures for finline components.

VIL

We have applied the variational method to a step dis-
continuity in unilateral finline on the basis of a simplified
description of the finline modes, as modes of a symmetri-
cal finned waveguide. A prudent choice of the “trial field”

CONCLUSIONS
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in the electric and the magnetic formulations allows us to
derive, very economically, simple equivalent circuits with
frequency-independent elements over a full waveguide
band for a broad range of practical step ratios. This
information is directly usable for CAD purposes.
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